Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 176: 159-168, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38281347

RESUMEN

Pyrolysis is a promising method for recovering resources and energy products from municipal solid waste (MSW). Predicting MSW pyrolysis products is crucial for establishing an efficient pyrolysis system for resource recovery. In this study, a database was established based on MySQL to record relevant information on MSW pyrolysis, which includes the MSW ultimate analysis results, proximate analysis results, parameters of pyrolysis operation and yields of pyrolysis products, etc. Based on the database and with help of a deep artificial neural network (ANN) which contains 10 hidden layers, a prediction model was successfully established to predict the yield of char, liquid and gas products from MSW pyrolysis. The results showed that the coefficients of determination for predicting the yields of char, liquid and gas from the MSW pyrolysis are 0.841, 0.84, and 0.85, respectively; these values demonstrate an accuracy comparable to that achieved for product prediction from single biomass, indicating a successful model performance. The results also show that ash content and temperature are the most important input factors influencing the outputs, namely, yields of char, liquid and gas. The results of this study can help to achieve a more efficient design of the pyrolysis system and improve the recovery of the desired pyrolysis products.


Asunto(s)
Pirólisis , Residuos Sólidos , Residuos Sólidos/análisis , Temperatura , Redes Neurales de la Computación , Biomasa
2.
Waste Manag ; 170: 112-121, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572447

RESUMEN

The volatiles and char derived from municipal solid waste (MSW) pyrolysis can be catalytically reformed and gasified using high-temperature CO2 (HT-CO2) as gasifying agent and char as a catalyst simultaneously to obtain high quality synthesis gas, but the reactor's design for this purpose is still a question. In this research, the contact configuration between the HT-CO2, the volatile compounds, and the char from MSW pyrolysis were studied to understand the relevant reaction behaviors and to establish guidelines for the reactor's design. Three contact modes were designed, including: M1, where volatiles and HT-CO2 contact first, then contact the char; M2, where volatiles, CO2, and char contact simultaneously at the bottom of the char layer; and M3, where CO2 contacts with the char first, then the volatiles contact in the middle of the char layer. The temperature evolution in the char layer, the yields and properties of the resultant combustible gases, used char, and tar were investigated. Experimental results revealed that the contact mode significantly affected the levels of char gasification and volatiles' reforming. For M1, intense thermal cracking of volatiles occurred and 65.41% of the input heat of HT-CO2 was consumed for thermal cracking, resulting in substantial carbon deposition and limited energy transfer from char to the synthesis gas. While, the char contacting HT-CO2 firstly in M3 improved its catalytic activity, causing 73.33 % of the input heat utilized for gasification and reforming; as a result, the maximum synthesis gas yield of 0.71 Nm3/kgMSW and gas energy ratio of 76.3 % were obtained respectively in M3 with the lowest tar yield of 5.45 %; additionally, the used char corresponded to the highest specific surface area of 10.12 m2/g. Ultimately, M3 is constructive and recommended, and the findings of this study offer helpful guidance for the design of pyro-gasification reactors.

3.
Waste Manag ; 149: 114-123, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35728475

RESUMEN

With the implementation of municipal solid wastes (MSW) source segregation collection policy, the combustible waste components are suitable for pyrolysis treatment to recover value-added energy such as gas or oil. In this research, the volatile compounds from MSW pyrolysis were reformed by the char obtained from the same process and the high-temperature flue gas (HTFG) of 1200 °C was supplying as heating resource and gasifying agent in a tailor-made experimental set-up. The final yields and properties of the syngas, char, and oil after reforming were investigated. Experimental studies showed that the composition of HTFG had a significant influence on the products. As the HTFG being CO2 and its flowrate increased from 0 to 4 L/min/(kgMSW), the energy share in the gas first increased from 8.29 to 15.1 MJ/(kgMSW) with a higher heat value (HHV) of 19.9 MJ/Nm3, then it decreased slightly with a further increase in the flowrate. However, as the HTFG was H2O or the model flue gas (consisting of CO2, H2O, O2 and N2), the higher flowrate always increased the energy share and cold gasification efficiency (CGE) in the gas products. Both CO2 and H2O participated the volatiles' reforming reactions and enhanced char gasification; while the volatiles' reforming inhibited char gasification. When the flowrate of the model flue gas increased from 0 to 12.04 L/min/(kgMSW), the oil and char yields decreased and the CGE increased to more than 75%, which was much higher than that from direct air gasification of MSW; moreover, the gas products had much higher HHVs. This research provides a guidance for producing high-quality syngas from the MSW.


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Dióxido de Carbono , Gases , Calefacción , Calor , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...